Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 14(10)2022 10 07.
Article in English | MEDLINE | ID: covidwho-2066560

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in a major health crisis worldwide with its continuously emerging new strains, resulting in new viral variants that drive "waves" of infection. PCR or antigen detection assays have been routinely used to detect clinical infections; however, the emergence of these newer strains has presented challenges in detection. One of the alternatives has been to detect and characterize variant-specific peptide sequences from viral proteins using mass spectrometry (MS)-based methods. MS methods can potentially help in both diagnostics and vaccine development by understanding the dynamic changes in the viral proteome associated with specific strains and infection waves. In this study, we developed an accessible, flexible, and shareable bioinformatics workflow that was implemented in the Galaxy Platform to detect variant-specific peptide sequences from MS data derived from the clinical samples. We demonstrated the utility of the workflow by characterizing published clinical data from across the world during various pandemic waves. Our analysis identified six SARS-CoV-2 variant-specific peptides suitable for confident detection by MS in commonly collected clinical samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Proteome , Peptides , Viral Proteins/genetics
2.
Clin Proteomics ; 18(1): 15, 2021 May 10.
Article in English | MEDLINE | ID: covidwho-1223761

ABSTRACT

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) global pandemic has had a profound, lasting impact on the world's population. A key aspect to providing care for those with COVID-19 and checking its further spread is early and accurate diagnosis of infection, which has been generally done via methods for amplifying and detecting viral RNA molecules. Detection and quantitation of peptides using targeted mass spectrometry-based strategies has been proposed as an alternative diagnostic tool due to direct detection of molecular indicators from non-invasively collected samples as well as the potential for high-throughput analysis in a clinical setting; many studies have revealed the presence of viral peptides within easily accessed patient samples. However, evidence suggests that some viral peptides could serve as better indicators of COVID-19 infection status than others, due to potential misidentification of peptides derived from human host proteins, poor spectral quality, high limits of detection etc. METHODS: In this study we have compiled a list of 636 peptides identified from Sudden Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples, including from in vitro and clinical sources. These datasets were rigorously analyzed using automated, Galaxy-based workflows containing tools such as PepQuery, BLAST-P, and the Multi-omic Visualization Platform as well as the open-source tools MetaTryp and Proteomics Data Viewer (PDV). RESULTS: Using PepQuery for confirming peptide spectrum matches, we were able to narrow down the 639-peptide possibilities to 87 peptides that were most robustly detected and specific to the SARS-CoV-2 virus. The specificity of these sequences to coronavirus taxa was confirmed using Unipept and BLAST-P. Through stringent p-value cutoff combined with manual verification of peptide spectrum match quality, 4 peptides derived from the nucleocapsid phosphoprotein and membrane protein were found to be most robustly detected across all cell culture and clinical samples, including those collected non-invasively. CONCLUSION: We propose that these peptides would be of the most value for clinical proteomics applications seeking to detect COVID-19 from patient samples. We also contend that samples harvested from the upper respiratory tract and oral cavity have the highest potential for diagnosis of SARS-CoV-2 infection from easily collected patient samples using mass spectrometry-based proteomics assays.

3.
PLoS One ; 16(4): e0249586, 2021.
Article in English | MEDLINE | ID: covidwho-1170005

ABSTRACT

Medical procedures that produce aerosolized particles are under great scrutiny due to the recent concerns surrounding the COVID-19 virus and increased risk for nosocomial infections. For example, thoracostomies, tracheotomies and intubations/extubations produce aerosols that can linger in the air. The lingering time is dependent on particle size where, e.g., 500 µm (0.5 mm) particles may quickly fall to the floor, while 1 µm particles may float for extended lengths of time. Here, a method is presented to characterize the size of <40 µm to >600 µm particles resulting from surgery in an operating room (OR). The particles are measured in-situ (next to a patient on an operating table) through a 75mm aperture in a ∼400 mm rectangular enclosure with minimal flow restriction. The particles and gasses exiting a patient are vented through an enclosed laser sheet while a camera captures images of the side-scattered light from the entrained particles. A similar optical configuration was described by Anfinrud et al.; however, we present here an extended method which provides a calibration method for determining particle size. The use of a laser sheet with side-scattered light provides a large FOV and bright image of the particles; however, the particle image dilation caused by scattering does not allow direct measurement of particle size. The calibration routine presented here is accomplished by measuring fixed particle distribution ranges with a calibrated shadow imaging system and mapping these measurements to the in-situ imaging system. The technique used for generating and measuring these particles is described. The result is a three-part process where 1) particles of varying sizes are produced and measured using a calibrated, high-resolution shadow imaging method, 2) the same particle generators are measured with the in-situ imaging system, and 3) a correlation mapping is made between the (dilated) laser image size and the measured particle size. Additionally, experimental and operational details of the imaging system are described such as requirements for the enclosure volume, light management, air filtration and control of various laser reflections. Details related to the OR environment and requirements for achieving close proximity to a patient are discussed as well.


Subject(s)
Aerosols/chemistry , Operating Rooms/organization & administration , Particle Size , COVID-19/prevention & control , COVID-19/virology , Humans
4.
J Proteome Res ; 20(2): 1451-1454, 2021 02 05.
Article in English | MEDLINE | ID: covidwho-1006441

ABSTRACT

In this Letter, we reanalyze published mass spectrometry data sets of clinical samples with a focus on determining the coinfection status of individuals infected with SARS-CoV-2 coronavirus. We demonstrate the use of ComPIL 2.0 software along with a metaproteomics workflow within the Galaxy platform to detect cohabitating potential pathogens in COVID-19 patients using mass spectrometry-based analysis. From a sample collected from gargling solutions, we detected Streptococcus pneumoniae (opportunistic and multidrug-resistant pathogen) and Lactobacillus rhamnosus (a probiotic component) along with SARS-Cov-2. We could also detect Pseudomonas sps. Bc-h from COVID-19 positive samples and Acinetobacter ursingii and Pseudomonas monteilii from COVID-19 negative samples collected from oro- and nasopharyngeal samples. We believe that the early detection and characterization of coinfections by using metaproteomics from COVID-19 patients will potentially impact the diagnosis and treatment of patients affected by SARS-CoV-2 infection.


Subject(s)
Bacterial Infections/diagnosis , COVID-19/diagnosis , Proteomics/methods , SARS-CoV-2/metabolism , Acinetobacter/isolation & purification , Bacterial Infections/complications , Bacterial Infections/microbiology , COVID-19/complications , COVID-19/virology , Coinfection/microbiology , Coinfection/virology , Humans , Mass Spectrometry/methods , Nasopharynx/microbiology , Nasopharynx/virology , Pseudomonas/isolation & purification , SARS-CoV-2/physiology , Streptococcus pneumoniae/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL